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The impact of initial land-surface states on monthly to seasonal prediction skill of the

Indian summer monsoon (June–September) is investigated using a suite of hindcasts

made with the Climate Forecast System version 2 (CFSv2) operational forecast model.

The modern paradigm of land-atmosphere coupling is applied to quantify biases in

different components of the land-atmosphere coupled system and their effect on

systematic errors. Three sets of hindcasts are performed for the period spanning

1982–2009 initialized at the start of April, May, and June. For a particular initial date

of a given year, one member (Control run) has the analyzed land initial state consistent

with the atmosphere, sea ice and ocean states for that year; the other 27 members have

land states taken from each of the remaining 27 years. There is significant improvement

in the deterministic prediction skill of near surface temperature and soil moisture on

monthly and seasonal time scales due to realistic land initial conditions. The improvement

occurs in those areas where the land-atmosphere coupling is strongest. Improvements

in the prediction skill of precipitation are confined to relatively small areas. The pattern of

skill differences resembles patterns of land-atmosphere coupling strength, while biases

in the representation of land-atmosphere coupling affect the skill of temperature and

rainfall. The re-emergence of skill in temperature and precipitation toward the end of

the season over northwest India within April and June IC hindcasts may be attributed

to better simulation of the withdrawal phase of the monsoon as well as increased

land-atmosphere coupling. For May IC hindcasts, increased skill in air temperature on

the sub-seasonal time scales could also be due to other large-scale factors. Errors

in the parameterization of radiation, convection, boundary layer processes, surface

moisture fluxes, and the representation of vegetation contribute to decay in potential

predictability and skill attributable to land initial conditions. Furthermore, incorrect

representation of daily and sub-daily precipitation statistics over land also likely lead to

errors in land-atmosphere coupling. Above all, the importance of accurate land surface

initialization and land-atmosphere coupling in improving the Indian summer monsoon

prediction on sub-seasonal to seasonal time scales is emphasized.
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INTRODUCTION

Does land surface initialization matter for the forecast of the
Indian summer monsoon rainfall (ISMR) and temperature on
sub-seasonal to seasonal time scales? That is the question
being addressed. Though state-of-the-art dynamical models have
demonstrated improvement in the prediction skill of the ISMR
in the last decade (Kumar et al., 2005; DelSole and Shukla, 2012;
Kim et al., 2012; Rajeevan et al., 2012; Nanjundiah et al., 2013;
Sperber et al., 2013), much of the skill has derived from improved
forecasts of sea surface temperature (SST) (DelSole and Shukla,
2012), and the strong relationship that the ISMR bears with
SST over different ocean basins (Saji et al., 1999; Gadgil et al.,
2003; Goswami et al., 2006; Kumar et al., 2006). However, it
is still much less than the potentially achievable skill (Rajeevan
et al., 2012; Goswami and Chakravorty, 2017). Anomalies in
soil moisture and snow at the land surface, which vary on low-
frequency time scales, can also affect the atmosphere from weeks
to months (Charney et al., 1975; Shukla and Mintz, 1982; Koster
and Suarez, 1995, 2004; Ashfaq et al., 2017) and are a source
of predictability (Shukla, 1985; Koster et al., 2004; Dirmeyer,
2006; Guo et al., 2012) beyond the deterministic limit for weather
forecasts (Dirmeyer et al., 2009). Therefore, the next frontier for
improvement in the Indian summer monsoon prediction is the
land surface.

The central and northwestern parts of India constitute one of
the global “hot spots” of land-atmosphere coupling where soil
moisture anomalies exert a significant control on temperature
and precipitation via strongly coupled processes (Koster et al.,
2004; Guo et al., 2006; Dirmeyer, 2011; Halder et al., 2015). In
addition, efforts to investigate the role of land-surface processes
during the onset (Saha et al., 2011, 2017; Bollasina and Ming,
2013; Senan et al., 2016) and in the low-frequency variability
of the Indian summer monsoon (Webster, 1983; Ferranti et al.,
1999; Yasunari, 2007; Turner and Slingo, 2011; Saha et al., 2012;
Halder et al., 2015, 2016; Halder and Dirmeyer, 2017) have
further added to the confidence that the prediction skill of the
Indian summer monsoon can be further improved. However,
the actual prediction skill arising from anomalies in the land
surface state may depend on themethods of forecast initialization
(Dirmeyer, 2005; Koster et al., 2011), errors in land surface
initial conditions (Dirmeyer and Halder, 2016, 2017) and the
systematic errors in the model (Dirmeyer, 2003) that affect
the land-atmosphere (LA) coupling strength (cf. Halder et al.,
2015). Therefore, it behooves us further investigation from the
perspective of the land surface, particularly in the Climate
Forecast System version 2 model (CFSv2; Saha et al., 2014) that is
used for routine operational forecasts by the IndiaMeteorological
Department (IMD).

Within the framework of the Global Land Atmosphere
Coupling Experiment version 2 (GLACE2), several global
models were able to demonstrate improvement in the hindcast
prediction skill due to realistic, observationally-based land
surface initialization (Koster et al., 2010, 2011). However, the
Global Forecast System version 2 (GFSv2), the atmospheric
component of the CFSv2 was unable to show any improvement
due to its inherent weaknesses in the representation of LA

feedbacks (Wei and Dirmeyer, 2010; Guo et al., 2011, 2012;
Zhang et al., 2011). Dirmeyer (2013) demonstrated that despite
evidence of evaporation-soil moisture feedback in CFSv2 that
is essential for land driven predictability, the atmospheric
component did not appear to maintain the necessary linkage
between antecedent soil moisture and precipitation. Therefore,
understanding the attribution of the processes responsible for
such weakness and their impact on the prediction skill in CFSv2
over the monsoon region is foremost necessary. In this context,
Yang et al. (2011), Dirmeyer and Halder (2016, 2017), Halder
and Dirmeyer (2017), and Saha et al. (2017) have discussed
a range of systematic biases in CFSv2 that are attributable to
land surface processes. Although prediction skill of the Indian
summer monsoon on different time scales by the CFS model
was earlier evaluated (Rai and Krishnamurthy, 2011; Pokhrel
et al., 2015; Sahai et al., 2015; Ramu et al., 2016), a systematic
investigation of the impact of land surface initialization and
LA coupling on the skill was lacking. Therefore, the following
objectives are addressed in this study: (1) Characterize land-
atmosphere feedback mechanisms over the Indian summer
monsoon region on sub-seasonal (i.e., monthly) to seasonal time
scales, (2) quantify the potential predictability and prediction
skill of the model due to land surface initial conditions, and
(3) understand the impact of biases in the representation of
land-atmosphere coupling on the prediction skill.

The model and the data used for validation of the model
are presented in section Model and Data. Section Experiments
describes the experiment design and methodology. Metrics of
land-atmosphere coupling and skill scores are discussed in
this section. Results discussed in third section are grouped
under two broad categories: understanding coupled land-
atmosphere feedbacks during the monsoon season and secondly,
impact on the predictability and prediction skill. Section
discussion explores the possible mechanisms and summarizes the
results.

MODEL AND DATA

Model
The atmospheric component of CFSv2, the GFSv2 has a
horizontal resolution of∼0.9◦ (T126 spectral resolution) whereas
the coupled Modular Ocean Model version 4 (MOM4; Griffies
et al., 2004) has a horizontal resolution of 1/2◦, increasing further
to 1/4◦ in the meridional dimension near the equator. Vertical
levels used are 64 in the atmosphere (topmost level reaching up
to 0.2 hPa) and 40 in the ocean. Sea ice is predicted using a
modified version of the Geophysical Fluid Dynamics Laboratory
(GFDL) Sea Ice Simulator (cf. Saha et al., 2010). The land surface
model coupled to GFSv2 is Noah version 2.7.1 (Ek et al., 2003)
having four soil layers; the individual layers starting from the
surface have depths of 10, 40 cm, 1, and 2m respectively. Noah
calculates the surface energy and water budgets and estimates the
transpiration component of evapotranspiration based on plant
water stresses.

Along with the planetary boundary layer scheme from Hong
and Pan (1996), an additional background vertical diffusion term
is included for enhanced mixing close to the surface e.g., in stable
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regimes when the eddy diffusion calculated by the PBL scheme
is insufficient. A shallow convection scheme (Tiedtke, 1983) is
used in locations where deep convective parameterization is not
active. The Rapid Radiative Transfer Model (RRTM; Mlawer
et al., 1997; Clough et al., 2005) radiation scheme is the same
as that used to generate the CFS reanalysis (CFSR; Saha et al.,
2010) but with major differences in cloud-radiation calculation.
A Monte Carlo independent column approximation (McICA)
(Barker et al., 2002; Pincus et al., 2003) is used for addressing
the unresolved variability of layered clouds in fractionally cloud
covered model grids.

Validation Data
Daily high-resolution (0.5 × 0.5◦) gauge-based rainfall from the
Climate Prediction Centre CPCv1.1 (in short CPC; Chen et al.,
2008) is averaged into monthly values and then blended with the
Global Precipitation and Climatology Project GPCPv2.2 (in short
GPCP; Adler et al., 2003) combined satellite and gauge based
monthly data (2.5 × 2.5◦) over land by giving equal weightage
to both (together CPC/GPCP), for the validation of model
output and calculation of skill metrics. For 2m near surface
air temperature, monthly data (0.5 × 0.5◦) from the Climate
Research Unit CRU TS v3.21 (in short CRU; Harris et al., 2014) is
used for validation and assessment of skill metrics. Additionally,
daily surface temperature data (1 × 1◦; 1982–2005) from the
India Meteorological Department (IMD; Srivastava et al., 2009)
averaged into monthly values is also used in place of CRU data
over the Indian region for the comparison of skill scores. For
the verification of state variables simulated over land, the Global
Land Data Assimilation System version 2.0 (GLDAS2; Rodell
et al., 2004) based daily soil moisture [surface (0–10 cm) and
sub-surface (10–40 cm)] analyses (1 × 1◦) are used. In addition,
daily near surface state variables, fluxes, and diagnostics from
the CFSR at T382 resolution (∼38 km) and the Modern-Era
Retrospective analysis for Research and Applications, Version 2
(MERRA2; Gelaro et al., 2017) at 0.625× 0.5◦ resolution are used
for the assessment of land-atmosphere coupling strength. Surface
short wave (v3.0) and longwave (v3.1) 3-h radiation fluxes from
the Surface Radiation Budget experiment (SRB, Stackhouse and
Gupta, 2013) are converted to daily and monthly values in order
to validate the net radiation simulated by the model. All the
data are re-gridded to a common spatial resolution (that of
the CFSv2) before the calculation of biases, skill metrics, and
coupling diagnostics.

EXPERIMENTS

Model Initialization and Hindcasts
Model simulations are initialized with the CFSR that has a higher
horizontal resolution (T382, ∼38 km) but also 64 vertical levels
in the atmosphere (Saha et al., 2010). The sea surface temperature
(SST) analysis for the ocean in CFSR uses two daily SST analyses
at 1/4◦ developed using an optimum interpolation scheme. The
first is an AVHRR-only SST data set (November 1981 through
May 2002) and the second is a combined AMSR+AVHRR
SST data set from June 2002 onwards (Reynolds et al., 2007).
Assimilated sea ice concentrations are derived from several data

sets (Cavalieri et al., 1996, 2007; Grumbine, 1996; Saha et al.,
2010). It is important to note that the land states in CFSR are reset
every 24 h at 0000UTC from a parallel offline simulation of Noah
v2.7.1 using atmospheric forcing from the GFS data assimilation
system (GDAS) and precipitation based on a blend of observed
global analyses (Xie and Arkin, 1997; Xie et al., 2007) and the
6-h precipitation generated by GFSv2. Thus, the land surface
model is said to be “semi-coupled” to the atmosphere in CFSR.
Such observational data-driven land surface analyses, offline, or
semi-coupled, where the errors of an atmospheric model are
not included, can provide the best estimate of land-atmosphere
coupling strength where there is lack of availability of long-term,
high-resolution micrometeorological surface flux observations.

Ensemble hindcasts are built around perturbations in land
initial conditions that are achieved in the following way. Hindcast
simulations are performed for the period spanning 1982–2009;
in each year three sets of 28-member ensembles are generated
by initializing the model at 0000UTC on the 1st of April, May,
and June and running through 0000UTC on the 1st of October.
For a particular initial date, the Control run (baseline ensemble
member) is initialized from CFSR for that date. The remaining
27 ensemble members are initialized with the same atmosphere,
sea ice and ocean states as in the Control simulation, but with
initial land states taken from each of the remaining 27 years
to span the interannual variability and achieve maximum initial
land perturbation. In other words, one member (Control run)
has the “correct” land initial state consistent with the atmosphere,
sea ice and ocean states for that year, and the other 27 members
effectively have “incorrect” land states. We name these initial
states as “realistic” and “randomized” land initial conditions
(ICs), respectively.

Assessment and Validation Methodology
Land-atmospheric coupling takes place via two legs or steps;
the “terrestrial” leg that determines when and where soil
moisture anomalies strongly affect surface fluxes of moisture and
sensible heat (Dirmeyer, 2011) and secondly, the “atmospheric”
leg that governs when and where variations in surface fluxes
strongly affect the near surface atmospheric variables such as
temperature and humidity, and growth of the boundary layer
(Dirmeyer et al., 2014) up to the lifting condensation level (LCL)
eventually leading to moist convection, formation of clouds,
and precipitation. LA coupling is said to exist if both the legs
are strong and in place over a region (Dirmeyer et al., 2014).
Locations where the water or the energy cycle would be the
preferred pathway of coupling depends on the climate regime and
season (Findell and Eltahir, 2003a,b).

Coupling strength in the model is analyzed following the
modern paradigm of land-atmosphere coupling. It proposes
that all three components, namely adequate sensitivity of the
atmosphere to variations in fluxes and soil moisture at the land
surface, sufficient magnitude of those land surface variations
and persistence of the anomalies represented in those variations
(a.k.a. memory), should be prevalent over a region for it to
be a location of strong land-atmosphere coupling. Sensitivity
that is quantified using correlation (implying covariability) is
based on actual physical processes or causality (Dirmeyer, 2011)
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and is an important metric widely used to quantify land-
atmosphere coupling (cf. Dirmeyer and Halder, 2016, 2017;
Hirsch et al., 2016; Lorenz et al., 2016; Draper et al., 2017;
Halder and Dirmeyer, 2017). The important aspect of this
metric is that while accounting for standard deviation along
with correlation, it rules out the possibility of LA coupling
over those regions where there is high correlation between
two variables but low variability. For example, places showing
significant positive (negative) correlation between soil moisture
and evapotranspiration (sensible heat) suggest the presence of
sensitivity whereby the fluxes are strongly controlled by soil
moisture variations. This means evapotranspiration in those
regions that are more specifically termed as “hot-spots” of land-
atmosphere coupling (Koster et al., 2004), is limited by soil
moisture availability. Places showing the opposite correlation
indicate that it is not soil moisture but other factors such as
surface net radiation or atmospheric moisture demand that are
in control. However, in certain other regimes such as hot deserts
with ample surface net radiation, weak soil moisture variability
can limit coupling despite presence of strong correlations. Last
but not the least, soil moisture memory, which allows sensitivity
and variability time to manifest into climate anomalies via LA
feedbacks, is calculated on the basis of daily autocorrelations for
each ensemble member (cf. Dirmeyer et al., 2016).

The indices’ variability (i.e., standard deviation denoted
by σ) and sensitivity when combined together result into
the terrestrial coupling index (TCI; Dirmeyer, 2011) or the
atmospheric coupling index (ACI; Dirmeyer et al., 2014). The
TCI is formulated as

TCI = σFCorrFL (1)

where, F represents surface latent or sensible heat flux (LHF
or SHF) and CorrFL represents the correlation between a land
state such as surface or root zone soil wetness (SSW or RSW,
represented by L) and those fluxes (i.e., F). On the other hand,
the ACI is formulated as

ACI = σACorrAF (2)

where, A represents atmospheric variables such as 2m air
temperature (2 mT), specific humidity (2 mQ) or diagnostics
such as the planetary boundary layer (PBL) height, lifting
condensation level (LCL) height or total cloud cover (TCC), and
F represents the fluxes of moisture or heat. Only correlations
between A or L and F significant at the 99% confidence level are
considered.

We characterize the predictability and prediction skill of the
model on monthly and seasonal (JJAS) time scales. Potential
predictability of a particular variable “xen” is quantified using the
ratio of its signal to total variance across the ensemble members
with perturbed land or atmosphere/ocean ICs. Following Shukla
et al. (2000), the total climatological variance of the variable xen
across forecasts initialized in a particular month is given as:

VT =
1

NE

N∑

n=1

E∑

e=1

(xen − x)2 (3)

Here, N and E stand for the total number of years of validation
and ensemble members respectively. The, grand and ensemble
mean are respectively defined as:

x =
1

NE

N∑

n=1

E∑

e=1

xen , and x =
1

E

E∑

e=1

xen (4)

Total variance can be decomposed into two parts: the variance
of ensemble means across the different initial states for the same
month of different years (signal):

Vs =
1

N

N∑

n=1

(xen − x)2 (5)

and the variance of individual ensemble members about their
corresponding ensemble means (noise):

VN =
1

NE

N∑

n=1

E∑

e=1

(xen − xn)
2 (6)

By suitably grouping the simulations whereby 28 different
atmosphere/ocean ICs pertain to ensemble members for a
particular land IC, we can quantify the predictability and
prediction skill due to initial land states. While validating
the forecasts against observation, for each initial start month,
Control simulations with “realistic” land ICs (hereafter
RealLIC) are considered as one set for purposes of estimating
interannual anomaly correlation coefficients, root-mean-
square-error (RMSE) and mean absolute bias (MAB) as
measures of skill. Remaining 27 ensemble members with
“randomized” land ICs (hereafter RandLIC) but same
atmospheric/ocean ICs are used for comparison. Significance
of the signal-to-total variance ratio (predictability) is tested
following a slightly modified Fischer’s F-test (cf. Guo et al.,
2011), under the null hypothesis of no predictability. For
testing the significance of correlations, difference in means
and land-atmosphere coupling metrics, a Student’s t-test is
used.

RESULTS

Modeled Climate during the Indian
Summer Monsoon Season
Simulated precipitation statistics during the monsoon season
(JJAS) with April, May, and June initial conditions (in short,
APRIC, MAYIC, JUNIC) are validated against observations
(Figure 1) to explore the fidelity of the model. For that we shall
mainly concentrate on the JUNIC seasonal hindcasts (Figure 1a),
but use all the three sets for characterizing monthly evolution
of forecasted variables with the lead-time. The observed spatial
pattern of rainfall is reasonably well simulated, particularly
the regions of rainfall maxima over the Western Ghats (WG)
orography and adjoining Arabian Sea (AS), central India (CI),
the head Bay of Bengal (BoB) and northeastern states, and
foothills of the Himalayas (Figure 1b). Such regions also depict
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FIGURE 1 | Mean (1982–2009) seasonal (JJAS) precipitation from (a) CFSv2 JUNIC hindcasts and (d) its interannual standard deviation (SDev). (b,e), respectively

show the same for CPC/GPCP2 combined observations. Rightmost column shows differences in (c) seasonal mean and (f) SDev. Units are mm day−1. Bottom row

shows monthly precipitation over the (g) northwest and (h) rest of India domains as depicted by small and big boxes in the first panel; for JUNIC, MAYIC, and APRIC

hindcasts and observations.

high interannual standard deviation, although it appears much
stronger in the model (Figure 1d) than observations (Figure 1e).
Differences (Figure 1c) further suggest an underestimation
of seasonal rainfall by the model over land, particularly CI
and the northwest, as reported in earlier studies (cf. Ramu
et al., 2016). On the contrary, there is an overestimation of
rainfall over the Himalayan region, eastern and northeastern
states, and the oceanic region. Differences also reveal higher
interannual variability over CI and the Indian Ocean, except
over the northwest and the Indo-Gangetic plains to the north
(Figure 1f).

On further examination of monthly rainfall from April
through September, it emerges that the northwest India (NWI)
region remains perennially drier in the model than observation
(Figure 1g) with the dry bias increasing with the forecast lead-
time (cf. Dirmeyer, 2013). This evolutionary feature of dry bias
is true for the rest of India (ROI) as well, although forecasts
initialized inMay appear to follow the observedmonthly seasonal
cycle the best (Figure 1h). All the forecasts fail to capture rainfall
over land realistically during the onset period i.e., May–June;
and for forecasts initialized in June, the rainfall is overestimated
toward the end of the season.

Soil moisture is a principal component of the hydrologic
cycle that controls the partitioning of surface net radiation
into sensible and latent heat fluxes that affect near surface
meteorological parameters and evolution of the boundary layer.
The climatological pattern of simulated (Figure 2a) and observed
(Figure 2b) soil moisture in the top 1m basically follows that
of precipitation, except that the eastern and northern parts of
CI appear to be drier than expected. The model soil layers
are relatively drier toward the north, northwest, and peninsular
India compared to the other regions, which could be due to
below normal precipitation. The climatological spatial pattern is
comparable to that of GLDAS2. However, simulated soil moisture
appears higher than observed over the Himalayas and adjoining
Tibet, and eastern and northeastern parts of India. Almost the
entire Indian land part has a systematic negative bias in simulated
soil moisture, except over the Himalayan region and the
northeast (Figure 2c). We verify that the interannual variability
of simulated soil moisture is also much stronger compared to
the observed analysis almost all over India (Figures 2d–f) except
over the north, northwest and northeastern regions. Simulated
monthly soil moisture also depicts that the systematic dry bias
over the ROI domain that aggravates with the forecast lead-time
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FIGURE 2 | Same as in Figure 1, except for top 1m soil moisture. Observations are from the GLDAS2. Units are volumetric.

from June to April (Figure 2h). Over NWI, the biases are starkly
negative in most of the months (Figure 2g). Such biases have
important implications for coupled model based forecasts for the
agriculture and hydrologic sectors.

Simulated monthly and seasonal 2m air temperature are
overestimated over the relatively dry NWI, northern and eastern
parts of CI during the summer monsoon, but is relatively
underestimated over peninsular India and the northeastern
states (Figures 3a–c). Lowest surface temperatures are simulated
over the Himalayas and adjoining Tibet on account of higher
altitude, and northeastern states. A part of these differences
maybe attributed to the dry precipitation bias; rather biases
in the simulation of clouds (Bombardi et al., 2015) and
surface net radiation (cf. Halder et al., 2015) are also largely
responsible. Interannual variability of the simulated temperature
is also overestimated over central India (Figures 3d–f). However,
farther west over the arid and cloud free areas near Afghanisthan
and Iran, the surface temperature variability is much subdued
and maybe attributed to biases in the radiation scheme or the
representation of aerosols in the model. The monthly evolution
pattern of simulated surface air temperature over NWI does not
reveal many differences among the three forecast sets; almost all
of them overestimate it by about 1–2◦C before and during the
season (Figure 3g). On the contrary, performance of the monthly

forecasts over the ROI is relatively better in terms of the bias
(Figure 3h). Once again, the MAYIC forecasts appear to be the
best among all three, particularly after June.

The Modern Land-Atmosphere Coupling
Paradigm Applied to CFSv2
Sensitivity
As aforementioned, one of the prime metrics of land-atmosphere
coupling is sensitivity. We analyze the sensitivity (through
correlation) of surface fluxes (LHF, SHF) to surface soil wetness
(SSW) at first, followed by that of the planetary boundary layer
(PBL) height and total cloud cover (TCC) to the surface fluxes.
In general, LHF is positively correlated to SSW over India during
JJAS implying that surface evapotranspiration is strongly limited
by soil moisture variations (Figure 4a), whereas for SHF it is
just the opposite (Figure 4b). As in CFSR (Figures 4e,f), the free
running model initialized in June captures the spatial pattern of
correlations in JJAS very well although, it is apparent that LHF
is weakly (strongly) sensitive to SSW variations over the NWI
(ROI) region. For SHF, sensitivity over the northwest region is
weaker than observations but matches reasonably well for the rest
of India. Sub-seasonal (monthly) evolution features also suggest
that the terrestrial coupling strength for both LHF (Figures 4i,m)
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FIGURE 3 | Same as in Figure 1, except for 2m air temperature. Observations are from the CRU. Units are in ◦C.

and SHF (Figures 4j,n) are weaker in CFSv2 than CFSR. The
differences in sensitivity aremuch stark during July to September.

The sensitivity of near surface/boundary layer variables and
convection to the fluxes of heat andmoisture i.e., the atmospheric
leg, are further evaluated. For PBL height, strongly positive
correlations over India, the Himalayas and adjoining Tibet, and
the areas further east (Figure 4c) imply a strong control of SHF
on the boundary layer growth.Weaker correlations over theWGs
and northwest, eastern parts of CI and peninsular India imply
that chances of convective initiation happening through the
moisture pathway maybe comparatively higher. Figure 4g shows
that the correlations in CFSv2 JUNIC runs are much weaker
over the northwest and east CI. On the other hand, negative
correlations of TCC with LHF (Figure 4d) indicate a plausible
greater control of surface net radiation (NRAD). Increased cloud-
cover during the monsoon season cuts-off NRAD, leading to
decrease in surface moisture fluxes. Such impacts appear to be
very weak over east CI that is already in a wet regime during
JJAS. However, the dependence of surface evapotranspiration on
the availability of NRAD is not as strong in CFSv2 over NWI as
in observations (Figure 4h); suggesting the climate in that region
is in a relatively drier regime. Monthly correlations also depict
weaker terrestrial coupling in CFSv2 (Figures 4k,l) compared to
the observations (Figures 4o,p), for both PBL height and TCC;

with more realistic coupling in June. Furthermore, the JUNIC
runs perform the best in terms of capturing the coupling strength
on the sub-seasonal time scale.

Variability
Daily variability in surface and root zone soil wetness is
mostly high over the western parts of CI, north and peninsular
India; whereas the wet and humid northeastern states and
adjoining Himalayas and arid deserts to the west depict very low
variations (Figures 5a,b). Soil moisture variability gets subdued
i.e., frequency tends to become more red as we explore further
deep into the soil layers. We notice lower (higher) variability
captured by the coupled model as compared to observations
(Figures 5e,f) over the northwest and north India (CI and the
peninsula). Differences indicate at shortcomings in the correct
representation of daily precipitation variability in the model (cf.
Bombardi et al., 2015). Such biases in turn can affect persistence
in soil moisture anomalies also. Furthermore, uncertainty in
the representation in snow cover and related hydrology is also
evident from the differences over the Himalayas; a common
systematic error noted in many models (Tiwari et al., 2016;
Ashfaq et al., 2017).

Observed daily variability in surface LHF depicted in CFSR
is well-captured by the free running model, except over

Frontiers in Environmental Science | www.frontiersin.org 7 January 2018 | Volume 5 | Article 92

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Halder et al. Land Surface Initialization and Indian Monsoon

FIGURE 4 | Ensemble-mean correlation of daily SSW with (a) LHF and (b) SHF; and (c) SHF with PBL height, and (d) LHF with TCC in JJAS from CFSv2 JUNIC

hindcasts. (e–h) respectively, show similar correlations based on the CFSR. (i–p) show monthly correlations for the same variables for the northwest and rest of India

domains, respectively; from JUNIC, MAYIC, and APRIC hindcasts and CFSR.

NWI, northern parts and adjoining Himalayas (Figures 5c,g).
However, the magnitude of LHF variability simulated in the
model is much subdued. Variability in SHF appears to be
better captured over the western and peninsular India in
terms of magnitude (Figures 5d,h). However, the free running
model grossly overestimates (underestimates) the observed SHF
variability over CI (north India and the entire Himalayan
belt). Stark contrasts are also verified over the Tibet and the
arid regions further west. The monthly evolution of observed
soil moisture and surface fluxes over northwest India depicts
a peak in June and July followed by a decline that is aptly
captured by CFSv2 (Figures 5i–l). The free running model
however, fails to capture the monthly evolutionary feature
over ROI (Figures 5m–p). Despite the biases, JUNIC hindcasts
are the closest to CFSR among all three. Such biases in the
correct estimation of daily variability of surface fluxes and
soil moisture can affect the terrestrial and atmospheric legs
of land-atmosphere coupling in the model, as suggested by
equations (1, 2).

It is verified that the mean surface NRAD and its daily
variability (Figures 6a,b) during JJAS are not realistically
captured in CFSv2 when compared to observations from the SRB

(Figures 6c,d). The spatial pattern of simulated daily variability
in NRAD appears to follow that of mean seasonal precipitation
over India that suggests it might be associated with the spatial
distribution of clouds as well. Highly overestimated surface
NRAD over the Indian land part contributes to the positive
bias in simulated surface SHF mostly over the north and NWI
where the simulated soil moisture is also low (Figure 6e). This
is partly the reason why there is a positive surface temperature
bias over that area. On the contrary, surface NRAD is much
underestimated over the Himalayan region, adjoining Tibet,
and the Arabian Sea. Daily NRAD variability is higher than
that observed over CI, northeast and the Himalayas, but lower
over the Indo-Gangetic plains, western Himalayas, and NWI
(Figure 6f). Such differences could be attributed to systematic
errors in the correct simulation of the vertical distribution
of clouds (Bombardi et al., 2015), radiation and atmospheric
humidity (Goswami et al., 2017), representation of aerosols
and surface albedo. Similarity among these and the pattern of
differences in surface heat and moisture fluxes suggests how
the latter could be strongly affected by NRAD errors over the
Indian region leading to biases in the representation of LA
coupling.
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FIGURE 5 | Ensemble-mean daily variability of (a) SSW, (b) RSW, (c) LHF, and (d) SHF in JJAS for CFSv2 JUNIC hindcasts. Observed variability of (e) SSW and

(f) RSW are based on GLDAS2 whereas that of (g) LHF and (h) SHF are based on CFSR. Units of variability for soil wetness are Volumetric and Wm−2 for fluxes. (i–p)

show the daily variability in different months for the northwest and rest of India domains, respectively; from JUNIC, MAYIC, and APRIC hindcasts and for GLDAS2 and

CFSR.

Land-Atmosphere Coupling
A combination of sensitivity and variability results in the
terrestrial and atmospheric coupling indices (TCI and ACI;
Equations 1, 2). As a result of the systematic errors in net
radiation, surface fluxes, and soil moisture, weaker than observed
TCIs and ACIs for 2m specific humidity (2 mQ) and LCL height
are depicted by CFSv2 over India during JJAS (Figures 7a–f),
particularly over NWI and western and northern parts of CI.
This could be a plausible reason why convective activities leading
to rainfall are lesser over those areas compared to CI, despite
having strong positive bias in surface temperature. Here, both
CFSR and MERRA2 (shown in black contours) data are used
to quantify LA coupling over the Indian region. We note that
the terrestrial leg of LA-coupling for near surface humidity
is not in place over east CI as the land surface is already
in a wet regime. On monthly time scales the model fails to
capture the sub-seasonal evolution of LA coupling, particularly
over NWI (Figures 7g–i), although the JUNIC hindcasts are
closest to CFSR in this respect. It performs relatively better
over the ROI (Figures 7j–l). It is further noted that, in general,
the seasonal spatial distribution and monthly evolution of the

coupling indices are similar for both CFSR and MERRA2 such
that the sign of the errors in CFSv2 hindcasts are same w.r.t both
reanalyses. However, there are some differences in terms of the
TCI over NWI and ACI over the ROI that may be attributed
to the differences between models and data assimilation
schemes.

LA coupling in JJAS for 2m air temperature and PBL height
are also weakly represented in CFSv2 over the NWI and north
(Figures 8a–c) when compared to observations (Figures 8d–f).
This is also evident on monthly (sub-seasonal) time scales over
theNWI (Figures 8g–i). For convenience, the terrestrial coupling
index for SHF with the opposite sign is shown. Further, over
east of CI it appears that LA coupling for PBL height is also not
well-captured by the model. Over the ROI domain the terrestrial
segment of coupling for SHF is stronger than both the reanalyses,
although, the ACIs for both 2 mT and PBL height appear to
be relatively well represented on sub-seasonal time scales as in
observations (Figures 8j–l). Differences in the coupling strength
between CFSv2 and observations that grow with the forecast
lead-time are associated with systematic errors in cloudiness and
rainfall, andNRAD and surface fluxes. Differences between CFSR
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FIGURE 6 | Mean (1982–2009) seasonal (JJAS) surface NRAD based on (a)

ensemble mean JUNIC hindcasts and (b) observations from the SRB project.

(c,d) Show the same except for the daily variability in NRAD in JJAS.

Differences in the (e) seasonal mean and (f) daily variability of NRAD between

the JUNIC hindcasts and SRB are shown in the bottom row. Units are in

Wm−2.

and MERRA2 in terms of the coupling indices are apparent only
over the ROI domain. Such differences shall be systematically
investigated in future studies.

Memory
Unless the anomalies in soil moisture over a region persist for
sufficiently long time, variability in near surface and atmospheric
variables brought about by the changes in surface fluxes will not
sustain and transpire into a meaningful atmospheric response
(Guo and Dirmeyer, under review). Over the Indian region,
surface soil moisture memory in CFSv2 extends only up to
about a week and gradually decreases from April (dry season)
through June (monsoon onset period, Figures 9a,e,i). The arid
region to the west of India has longer memory compared to
the wet and humid regions to its east. Soil moisture anomalies
in the root zone persist comparatively longer, particularly over
the north and NWI (Figures 9b,f,j). The memory is about two
months in April that decreases through June with increasing
precipitation and soil wetness (for deeper layers it is closer to a
season; not shown). Longer memory in the root zone and deeper
layers can help in maintaining the initial soil moisture anomalies
for substantially long periods and may affect the surface fluxes
on sub-seasonal time scales. In general, soil moisture memory
over ROI (drier areas of NWI) appears to be higher (lower)

than that depicted in GLDAS2 (Figures 9c,d), which is mainly a
result of differences in observed and simulated daily precipitation
statistics. Furthermore, as the precipitation in June further
decreases with the forecast lead-time (APRIC and MAYIC),
an increase in the persistence of soil moisture anomalies over
the west of CI, north and NWI becomes increasingly apparent
(Figures 9g,h,k,l). Such changes in soil moisture memory and
hence LA coupling can affect the forecast of near surface
temperature and rainfall.

Predictability and Prediction Skill due to
Land Surface Initialization
Potential Predictability
At the outset, there is very little potential predictability of
precipitation in this model over the Indian region due to land
initial conditions (not shown). Potential predictability due to
ocean initial conditions however, persists throughout the boreal
summer season, and is the strongest over the eastern Pacific
Ocean (Supplementary Figure S1). Here, the first 30-day average
has not been shown to exclude the effect of persistence in
atmospheric ICs. For 2m air temperature, potential predictability
of the model attributed to land and ocean initial conditions is
depicted (Figure 10) for 30-day average periods starting from
the date of initialization in June and April. The ensembles
are arranged in such a way that for a particular land initial
condition the initial atmosphere/ocean states are randomized.
The lowest shaded value corresponds to the 95% confidence
level. Predictability of the model due to land initial conditions in
June is notable only in the first month (Figure 10a), particularly
over north and northwest India and adjoining Himalayas; east,
northeast and southern Tibet, and the peninsula. Thereafter, it
dissipates rapidly within the season (Figures 10b–d). For April
(and May, figure not shown) initial conditions, land driven
potential predictability is evident over areas more widespread
than in June (Figures 10e–h) and persists longer over the
Tibetan region. Such features appear to be associated with
snowmelt and associated changes in soil moisture toward
late spring that imparts memory to the surface and prolongs
land driven predictability. Potential predictability due to ocean
initial conditions is comparatively much higher for this model
(Figures 10i–p) and persists longer. It may be noted that the
impact of atmospheric ICs on the potential predictability is
also evident in the first 30 days. Comparison of the signals
(i.e., ratio of variances) due to land and ocean initialization
suggests that the relative contribution of land surface states to
the potential predictability is greater only over snow-covered
areas (significant areas enclosed in black contour). On a global
scale, a similar feature is also noted for snow-covered areas over
northern regions of Eurasia and North America during boreal
spring through summer (not shown) that suggests there is need
for further efforts to exploit this signal to improve land driven
prediction skill.

Deterministic Prediction Skill
Do we notice any discernible impact of realistic land ICs on the
deterministic hindcast skill of 2m air temperature? What role
does land-atmosphere coupling play in enhancing the skill? To
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FIGURE 7 | (a) Terrestrial coupling index (TCI) for 2m specific humidity (2 mQ) based on SSW and LHF and (b) the corresponding atmospheric coupling index (ACI)

based on LHF and 2 mQ, from CFSv2 JUNIC hindcasts. (c) shows the ACI for LCL height. Units are Wm−2, gm Kg−1, and m, respectively. (d–f) respectively, shows

the same for CFSR (shaded) and MERRA2 (black contours). (g–i) and (j–l) show the monthly coupling indices in JJAS for the northwest and rest of India domains,

respectively; from JUNIC, MAYIC and APRIC hindcasts, CFSR and MERRA2.

find answers to these questions we analyze the median anomaly
correlation of CFSv2 JUNIC 2m temperature hindcasts with
CRU based on 27 RandLIC cases for the period 1982–2009
(Figure 11a), and based on those correlations assess the rank of
the correlation for the hindcast based on RealLIC (Figure 11b).
Correlations with IMD data are based on a shorter period (1982–
2005). Enhancement in skill, depicted by an increase in the
anomaly correlations and hence their rank, due to realistic land
ICs is expected particularly over those regions where the LA
coupling is strong. We compare the correlations for the first
month when the impact of realistic land ICs is expected the most
as well as the season (JJAS). Note that correlation values with
CRU data greater (less) than 0.37 (−0.37) are significant. For
IMD data, the corresponding values are± 0.4. Significant skill in
2m air temperature verified in June over the Indian region due
to RandLICs may arise due to correct atmosphere and ocean ICs.
For the season as a whole (JJAS), skill due to RandLICs is mostly
confined to the east of CI, peninsular India and a small region
to its west (Figure 11e). These spatial patterns in skill are mostly
expected because of the proximity of those regions to the ocean
(cf. Koster and Suarez, 1995).

Based on the higher rank of the anomaly correlation obtained
using RealLICs, one can conclude that the monthly forecast skill

is enhanced in June mostly to the east of CI and peninsular India,
but reduced over the northwest region, northern India, and the
Himalayas (Figure 11b). As for the season (JJAS), there is also an
increase in skill over the peninsula, CI and the north, but decrease
over the northwest (Figure 11f). Areas showing an increase in
skill indeed coincide with those regions where the LA coupling
in the model is strong (cf. Figures 4, 8, 9). We shall further
discuss the factors underlying those changes in the next section.
Interestingly, there is also much enhancement in skill over the
northeastern states of India, Myanmar, and parts of southeast
Asia. A comparison using the two verification datasets helps
in making a better objective assessment of the improvement in
skill.

On monthly time scale, median skill due to RandLICs is the
highest only during the first month and decreases thereafter in
the season, for all start dates (Figures 11i,m). There is also a
systematic increase in seasonal forecast skill of 2m temperature
with reduction in the forecast lead-time from April to June that
indicates a dynamical drift in the model climatology. Interesting
changes are noted when RealLICs are used for initialization.
Over the rest of India domain highest increase in skill is shown
by JUNIC hindcasts for June, followed by MAYIC and APRIC
(Figure 11n). Contrary to that MAYIC hindcasts depict skill
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FIGURE 8 | (a) Terrestrial coupling index (TCI) for 2m temperature (2 mT) based on SSW and SHF and (b) the corresponding atmospheric coupling index (ACI) based

on SHF and 2 mT from CFSv2 JUNIC hindcasts. (c) shows the ACI for PBL height. Units are Wm−2, ◦C, and m, respectively. (d–f) respectively, shows the same for

CFSR (shaded) and MERRA2 (black contours). (g-i) and (j-l) show the monthly coupling indices in JJAS for the northwest and rest of India domains, respectively;

from JUNIC, MAYIC and APRIC hindcasts, CFSR and MERRA2.

enhancement for July, August and JJAS over the northwest;
unlike APRIC or JUNIC (Figure 11j). Such a feature has been
reported in earlier studies as well (cf. Pokhrel et al., 2015)
mentioning that May IC hindcasts have the highest skill in CFSv2
freeruns for JJAS that is mostly associated with slowly varying
oceanic boundary conditions. On the other hand, APRIC and
JUNIC hindcasts show an increase in skill due to RealLICs toward
the end of the season (i.e., September).

As the spatial patterns of RMSE and MAB are similar, we
have considered their average for an assessment. Large errors
in simulated temperature in June and JJAS are noted over
the Gangetic plains over northern India, near the Himalayan
foothills, northwestern regions, and parts of CI due to RandLIC
(Figures 11c,g). This implies that apart from the mean surface
temperature bias (cf. Figure 3) the model is unable to accurately
capture variability in surface temperature over those regions that
also include areas having steep vertical gradient. Use of RealLIC
is found to largely decrease those errors in June (Figure 11d); for
JJAS only a few small areas tend to show an increase (Figure 11h).
Monthly RMSE and MAB also systematically decrease over India
for RandLICs, from April through June (Figures 11k,o). For

RealLIC, the errors of JUNIC hindcasts are lower than that of
APRIC (Figures 11l,p). However, they are lowest for MAYIC
hindcasts.

Apart from temperature, there is enhancement in the
precipitation forecast skill over India due to realistic land surface
initialization, particularly over CI and the northwest region
(not shown). However, the improvement that takes place only
over few areas won’t qualify for the field significance test.
Furthermore, we also verify increased skill in precipitation over
the northwest region in September (not shown) that might
be associated with better simulation of the withdrawal of the
monsoon.

DISCUSSION

Plausible Mechanisms
Memory of the surface soil layer is short. However, soil moisture
memory in the root zone can extend upto a month or two
over certain regions and even upto a season for the layers
further deep. The Indian summer monsoon is punctuated by
alternating episodes of above and below normal rainfall activity
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FIGURE 9 | (a) Surface (SFC) and (b) root zone (RZN) soil moisture (SOILM) memory in April based on CFSv2 APRIC hindcasts. (e,f, i,j) show the same for May and

June based on MAYIC and JUNIC hindcasts, reespectively. (c,d) shows the soil moisture memory in June based on GLDAS2. Changes in soil moisture memory in

June based on (g,h) APRIC-JUNIC, and (k,l) MAYIC-JUNIC hindcasts Units are in days.

on the intraseasonal time scale, and such fluctuations have
dominant periodicities of 10–20 and 30–60 days (Goswami and
Xavier, 2005). Therefore, during the course of the monsoon
season under certain atmospheric conditions such as prolonged
dry spells or drought when the land surface shifts to a drier
regime, deeper layer soil moisture anomalies may strongly
affect surface fluxes, near surface atmospheric variables and
lower-tropospheric stability through transpiration and vertical
movement of water in soil (cf. Saha et al., 2012). We propose
that longer soil moisture memory in the root-zone and deeper
layers is one of the prime reasons for changes in temperature
(and precipitation) skill on sub-seasonal and seasonal time scales.
To justify that, we demonstrate the median skill in rootzone soil
moisture from JUNIC hindcasts (Figure 12). For verification,
the global offline soil moisture analysis from GLDAS2 is
used.

Unlike temperature, median anomaly correlation in root
zone soil moisture due to RandLICs is low in all the months
(Figures 12a,c). This is revealed from the area averaged values
of the correlation over both regions. Much of the skill in soil
moisture is derived from the skill in simulated precipitation
due to RandLICs. When initialized with realisitc land states,
large areas depict a significant increase in soil moisture skill
not only over India but the entire south Asian region (not
shown). Over the NWI (top right panel), there is increased
soil moisture skill in June due to usage of realistic initial
land surface states for all three initial start dates (Figure 12b).
However, that does not appear to translate into skill of air
temperature because of weak LA coupling over that region.

Maximum enhancement in surface temperature skill in JUNIC
and APRIC hindcasts with RealLICs, that could be attributed
to the skill in simulated soil moisture is noted in September.
It could also be that the withdrawal of the monsoon from
the north and northwest regions of India in September is
better captured in those simulations (not shown) that results
in increased skill of soil moisture. Furthermore, part of the
enhanced air temperature skill in July, August and JJAS in
MAYIC runs could also be explained by the increased soil
moisture skill in those months. On the other hand for the ROI,
soil moisture skill due to realistic land surface initialization
in June and May translates into air temperature skill only in
June and JJAS (Figure 12d). For APRIC, that happens only in
September.

There could be several factors contributing to the enhanced
skill in surface temperature over India on sub-seasonal to
seasonal time scales, such as the ocean (Pokhrel et al., 2015),
snowmelt and associated hydrological effect over Eastern Eurasia
(Halder and Dirmeyer, 2017) or land-use land-cover changes
(Halder et al., 2016) that needs further investigation. Here, we
explore the LA coupling pathway that links skill in local soil
moisture anomalies to that of temperature and precipitation.
Increased precipitation leads to an increase in ground wetness
through infiltration, both at the surface and sub-surface. For
vegetated surfaces, precipitation tends to have a high correlation
with the evaporation of canopy intercepted water (CEVAP; not
shown), especially in second generation land surface models such
as the Noah where all leaves are assumed to be oriented parallel to
the ground. Transpiration is completely shut-off when leaves are
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FIGURE 10 | Potential predictability of 2m air temperature in CFSv2 JUNIC hindcasts due to land initial conditions, expressed as a signal-to-total variance ratio and

based on (a) 1–30 day, (b) 16–45 day, (c) 31–60 day and (d) 46–75 day averages. (e–h) respectively, show the same for APRIC hindcasts. (i–p) depict the potential

predictability due to ocean initial conditions in JUNIC and APRIC hindcasts. All shaded areas are significant at the 95% confidence level. Black contours depict the

areas where the variance ratios of signals due to land vs. ocean ICs are significant.

covered with water, leading to a strong negative correlation with
CEVAP. This is mostly noted (for MAYIC runs) over western and
CI, the WGs, east and northeast India and the foothills of the
Himalayas (Figures 13a,e,i,m). While the negative correlations
intensify with increasing precipitation over India from June
through September, parts of northern and NWI and the rain-
shadow region of eastern peninsular India that remain relatively
drier show the opposite. On the other hand, bare ground
evaporation (GEVAP) that is strongly controlled by surface
soil moisture variability in arid to semi-humid regions may
continue to be high. Root zone (and deeper layer) soil moisture
can have a strong impact on surface moisture fluxes through
transpiration (TRANSP) or vertical soil water movement, over
areas where canopy evaporation has not completely shut it off.
Figures 13b,f,j,n show that such anomalies can strongly control
transpiration (and hence LHF) in those regions, as evidenced
by the significant positive correlations during all the months.
Negative correlations over the east and south of CI do not
become significantly strong until in August. Therefore, it is
verified that skill in root zone soil moisture anomalies can
increase the skill of near surface variables such as temperature

on sub-seasonal time scales. Such association is strongly
reflected in the monthly TCI plots for RSW and TRANSP
(Figures 13c,g,k,o) and RSW and GEVAP (Figures 13d,h,l,p).
Over parts of CI in June and July where the correlations in
surface transpiration are weakly negative, ground evaporation
controlled by root zone soil wetness can also act to increase
the skill of surface temperature through the modulation of the
fluxes.

Summary
Land-atmosphere coupling is defined as the feedback link from
land surface states to surface fluxes to atmospheric states
and characteristics. The modern paradigm of land-atmosphere
coupling proposes three ingredients must exist over a region
for land surface states to translate into meaningful reponses in
the atmosphere. The ingredients are sensitivity of downstream
states/fluxes to variations in upstream states/fluxes, variability
of upstream states/fluxes, and persistence of soil moisture
anomalies at the first link in the chain. We investigate the
impact of initial land states and land-atmosphere coupling on the
predictability and prediction skill of Indian summer monsoon
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FIGURE 11 | (a) median anomaly correlation of 2m air temperature in June based on CFSv2 JUNIC hindcasts with RandLIC and CRU (shaded) and IMD (black

contours). (b) rank of the anomaly correlation based on JUNIC hindcast with RealLIC among 28 ensemble members. (c) average of RMSE and MAB based on JUNIC

hindcasts with RandLIC. (d) shows the difference of mean RMSE and MAB (RealLIC-RandLIC). (e–h) depict the same as in first row except for JJAS.

(i,k,l,m,o,p) show the same for APRIC, MAYIC, and JUNIC hindcasts; except for each month in JJAS and area averaged for the northwest and rest of India domains,

respectively. (j,n) depict the percentage area that shows RealLIC anomaly correlations in the upper quartile of the 28 ensemble members.

FIGURE 12 | (a) median anomaly correlation of root zone soil moisture based

on CFSv2 JUNIC, MAYIC and APRIC hindcasts with RandLIC and GLDAS2, in

each month and JJAS, averaged over the northwest of India. (c) shows the

same for the rest of India region. (b,d) depict the percentage area that shows

RealLIC anomaly correlations in the upper quartile of the 28 ensemble

members, for each month and JJAS, for the northwest and rest of Indian

domains, respectively.

(June through September) rainfall and temperature through a
suite of retrospective forecasts using the CFSv2 global coupled
model. A large matrix of 28× 28 hindcasts during 1982–2009 are
used to demonstrate such impact.

Potential predictability in the model for near surface air
temperature over India attributed to land ICs exists only in the
first month and decreases thereafter. For other regions, such as
extratropical vegetated or snow covered areas, there is discernible
predictability at least for a few months during boreal summer
and the preceeding spring. While predictability in precipitation
for this model attributed to land ICs it is too weak to be
significant, there is significant potential predictability associated
with ocean-atmosphere ICs. Previous studies that demonstrate a
weak correspondence between intial land states and subsequent
precipitation anomalies over the Indian region (cf. Dirmeyer,
2013; Dirmeyer and Halder, 2017) also support our inference.
There is however, significant deterministic skill improvement in
the interannual anomalies of monthly and seasonal (JJAS)
near surface temperatures due to realistic land surface
initialization.

In general, all the hindcasts when realistically initialized
at the land surface in June, May, or April show increased
skill in monthly air temperature anomalies over the Indian
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FIGURE 13 | Corelation of transpiration (TRANSP) with (a) canopy evaporation (CEVAP,) and (b) root zone soil wetness (RSW) in June based on CFSv2 MAYIC

hindcasts. Terrestrial coupling index (TCI) between RSW and (c) TRANSP and (d) ground evaporation (GEVAP) in June. Units for TCI are Wm−2. (e–p) depict similar

relationships for the months July, August, and September, respectively.

region, except the northwest and north. Over northwest India,
maximum skill improvement is noted in June and JJAS for
hindcasts initialized in May; whereas highest skill improvement
toward the end of the season is noted for April and June IC
hindcasts. Improvements in skill due to realistic land surface
initialization mostly take place over those areas where the land-
atmosphere coupling is strong in the CFSv2 model. However,
shortcomings in the accurate representation of coupling across
the land-atmosphere interface due to systematic errors in the
model prevent further improvement in the skill. It may be
noted that while reanalysis based land surface fluxes depend on
the quality of the model physics and the initial analysis and
are known to have uncertainties; efforts are increasingly being
made to reduce them, particularly in the moisture fluxes, by
rectifying errors in the simulated precipitation forcing using
observational constraints and allowing the land surface model
physics to respond (cf. Meng et al., 2012; Draper et al., 2017).
There could also be large-scale factors other than local land-
atmosphere coupling that contribute toward improved sub-
seasonal to seasonal air temperature skill due to May ICs.
Although, there are improvements in the prediction skill of
precipitation due to realistic land surface initialization, changes

over India are confined over relatively lesser areas. Innovative
design of experiments and an improved atmospheric model
would be needed to better demonstrate such skill enhancement.

There is skill in simulated soil moisture at the surface and
sub-surface layers that contributes toward an improvement in
temperature skill on monthly (sub-seasonal) and seasonal time
scales, through changes in transpiration and ground evaporation
fluxes. However, due to the lack of a dense network of rain-gauge
observations in the areas further to the northwest of India, the
uncertainty associated with soil moisture values has also to be
accounted for. It is proposed that long soil moisture memory
within the deeper soil layers can help in the persistence of realistic
initial land states and lead to the reemergence or improvement
in skill of near surface air temperature over certain regions,
provided the necessary ingredients of strong land-atmosphere
coupling are present. Such mechanisms shall be explored in a
follow-up study.

We speculate that better simulation of the timing of
withdrawal of the monsoon from the northwest of India
could also be a cause of increased skill in precipitation
and surface air temperature (not shown), at the end of
the monsoon season. There could also be other complex
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processes at the soil-vegetation-atmosphere interface, such
as land-use land-cover change and associated changes in
surface albedo, moisture and radiation fluxes that leads to
changes in skill on sub-seasonal or extended range time scale.
However, such detailed investigation of plausible causes shall
be made in future endeavours. Nevertheless, several factors
already discussed the section Restuls that could lead to the
minimization of the predictability from initial land states and
degradation of forecast skill stand out in this study. They
include errors in the parameterization of radiation, shallow
and deep cumulus convection; a boundary layer scheme that
poorly represents vertical eddy diffusivity; surfacemoisture fluxes
and representation of vegetation. Apart from that, incorrect
representation of daily and sub-daily precipitation statistics
arising from errors in the diurnal cycle of convection over
land in CFSv2 are also likely responsible for errors in land-
atmosphere coupling. There could be further improvement in the
skill of Indian sumer monsoon simulations if accurate initial land
states and a network of in-situ surface flux (micrometeorological)
observations for the verification of land-atmosphere coupling
were available. Therefore, for improved simulation of the Indian
summer monsoon on different time scales, a concerted effort is
needed for improvement of the land-ocean-atmosphere coupled
processes in weather and climate models.
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